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Fig 1.  Effect of localized bias correction 
(CDF-matching) on soil moisture retrieval.

Issue:
Localized observation rescaling removes 
some independent information from 
very skillful SMAP retrievals.

Objective:
Efficiently assimilate SMAP observations 
into the NASA Catchment model.

Compare which rescaling method uses 
independent satellite information most 

efficiently. 

Motivation
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Fig 2. NN training procedure.

Å Neural Networks (NN) retrieve soil moisture in model climatology 
(mean, variance, higher moments) (Kolassaet al. 2017,  in review)

Å Global dynamic range and bias from model (GEOS-5)

Å Spatial and temporal patterns from observations (SMAP + ancillary data)
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Can NN retrievals reduce the need for further bias correction prior to assimilation and 
thus avoid removing independent satellite information?

SMAP Neural Network Retrievals
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Experiments

Å OL Model-only simulation (no assimilation)
Å DA-NN: Assimilate NN retrievals without further bias correction
Å DA-NN-CDF: Assimilate NN retrievals with local bias correction 
Å DA-L2P-gCDF:  Assimilate L2 passive retrievals (hΩbŜƛƭƭ Ŝǘ ŀƭΦΣ 2015) with global bias correction
Å DA-L4: Assimilate locally rescaled brightness temperatures in SMAP L4_SM system

Å April 2015 ςMarch 2017
Å 9 km EASE v2 grid
Å Contiguous United States
Å 3-hourly analysis

Ҧ Assess skill improvements of DA over OL at SMAP core validation sites 
(Jackson et al., 2016; Colliander et al., 2017)

SMAP SoilMoistureAssimilation
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Global rescaling experiments introduce more of the SMAP retrieval information.
South Fork watershed

Little River watershed

Fig 3. Difference (OL minus DA) in soil moisture (top row) mean and (bottom row) standard deviation.

Impact on SoilMoistureClimatology
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Evaluation vs. In Situ Measurements:  Global vs. Local Rescaling
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Evaluation vs. In Situ Measurements:  Global vs. Local Rescaling
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Global bias correction has potential for greater skill improvements but 
makes assimilation estimates more vulnerable to bias in retrievals.
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Evaluation vs. In Situ Measurements:  NN vs. L2P Assimilation
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